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1. Introduction and results

Let {Xn. 1 j K n; n=1.2.... } be a triangular array of rowwise

stationary real valued random variables, where stationarity means that for any
............ ) and(X n i+h....

S iI .... ik i1 +h..... ik+h K n. (X,. il ., Xi k )

X )k h have the same distribution. For each n. let x(k) be the k-th largest

among IX 1 ..... X I in the sense of absolute value such that JXn{1)I I ..

IX(n)I. Let Sn = 1X and define the modulus trimmed sum by

(r)S  = S r
n n nk=l

where r 1 is a fixed number of trimmed terms. In this paper, we shall study

the asymptotic behaviour of (r)sn

There are two types of modulus trimming. In light trimming r is fixed,

and in full trimming r = rn depends on n and in most cases rn -o- and r n/n -* 0

are assumed. Light trimming has been studied by [Dar]. [AB], [H]. [Ma] and

[Mo]. Full trimming has been investigated by, e.g., [KL]. [GPl] and [HK].

Natural order trimming is based on XnI K ... K X . the order statistics

of {Xnl' .. XX}, and the naturally trimmed sum is

r s

S(rs) =S - In X - IXn
n n n n k=l k=l n'n-k+1

(2r)S and S n(r r) are expected to have similar asymptotic behaviour, but this

is not necessarily true (cf. [GP2] p. 1188). Natural trimming has been studied

by, e.g., [CHoM], [CP1], [CHaM]. [GP2J. We shall briefly mention this trimming

at the end of the paper.

In all papers mentioned above, the random variables are i.i.d. Here we
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relax the condition of independence. Namely, our random variables are

stationary, but not necessarily independent. However, we treat only triangular

arrays whose marginal distributions belong to the domain of attraction of an

infinitely divisible law without Gaussian component.

Our assumptions are as follows.

We first describe the assumptions on the marginal distribution function.

Let Fn be the distribution function ofX 1 j n, and let {X .1 I j n;

n=1,2.... } be the associated triangular array of {X n) with independent random

variables, namely for each n, (X n} are i.i.d. and Xnj has distribution F

(A.1) there exist {c I such that 111 X - c converges in law to an infinitely
n inni n

divisible random variable without Gaussian component whose characteristic

function is given by

(1.1) f(6) = exp{ f...{ 0oh(6,x) v(dx)}

where h(e.x) = e iC - 1 - iox lIxIKl ) and v(-) is a L6vy measure on R\{O)

satisfying r\(o)(X 2 A 1) v(dx) <

It is known (e.g., see [P]) that (A.1) is equivalent to the following two

conditions:

n(l - Fn (x)) -* v((x,e*)), x > 0,
(1.2) 4 nF(x) o((-*,xJ), x < 0,

at all continuity points x of v, and

(1.3) lim lim n ( fixi<6 x2 dF(x) - flxl<xd(F(x))2  = 0.

(A.2) v(-) has a polar decomposition of product type such that for another L6vy

measure p(-) on (O.,=) and for 0 K p. q K I with p + q = 1.

v(A) = p p(A n (O.,)) + q p((-A) n (0.-)), A C %(9\{0).
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Hence, (1.2) can be written as

[n(l - Fn (x)) -p p((x.m)), x > 0.
(1.4) 0 nF(-x ) -q p([x.m)). x > 0.

We next explain the assumptions on the joint distribution functions.

namely some mixing, local dependence and other dependence conditions. Our

conditions are those originally formulated by Leadbetter [Le] and then modified

by Davis [Dav2]. (also see [JK]).

(D.1) For every set B which is a finite union of disjoint intervals of the form

d
U (ai,bi] whose closure does not contain 0, as n -e
i=l

sup nP( Xj C Bc . p<Jr -P, X C Bc, p<Jq I P( Xj 6 Bc. q(<jr 0, -0.

where supremum is taken over all p. q, r such that 0 K p K q K r K n.

(D.2) For all x > 0.

[n/k]
lim limsup n n P(IXnlI > x. IXnjI > x) = 0.
k-4w n-4 J--2

n
(D.3) lim limsup n I max{O. Cov(X 1i I X I<e) X in J<e J)} = o.

To state our theorem, we need more notation. Let f6{Jj=1 be a sequence

of i.i.d. random variables such that P{6 1 = 1) = p and P{6 1 = -1) = q, where p

and q are defined in assumption (A.2). Let (r I  be Poisson arrival times

with unite rate. namely rj= e1 +...+ ej. where (ej) = are i.i.d. random

variables having the exponential distribution with mean 1. We assume 16%} and

yr-} are independent of each other. Let ynk = IX(k) I and 6nk = sign(X(k)) so

that X(k)=6 Y and(r)s = r 6 Y
n nk nk n J=r+l nj nj*
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Our main theorems are the following:

Theorem 1. Assume (A.1), (A.2), (D.1). (D.2) and (D.3), and define

R(u) = inf{x > 0: p((x.')) u}. u > 0.

as the right continuous inverse of the function x £- p((x.s)). Then we have as

n - .

(r)S _ (r)c n (r)Z,
n n

where
n

(r)C n E[5ni Yni 1(Y I1]'

n J=r+l nj

(r)Z = R() - (p-q) E[R(FI ) I{R(r)W 1 1DJ=r+l {jRr)I()I} ,

-denotes weak convergence, and the infinite series in (r)z converges almost

surely.

Theorem 2. The characteristic function of (r)Z is given by

E[eie (r)z I p((O )) ur-I u h(B.x) v(dx)}du
- (r-l)! 0 exp{ -u + O<IxlR(u)

1 r-l -u
(1.5) + (r--1) p((0..)) u e du.

Remark 1. Hall (H] studied the same problem for a sequence of independent

random variables belonging to the domain of attraction of a non-normal stable

law and obtained the limiting characteristic function. Later Mori [No] examined

the limiting characteristic function of modulus trimmed sums when the law of the

subsequential limit of sums of independent random variables is infinitely

divisible. The limiting characteristic function in (1.5) is an extension of

-a -1/athat in [H] where p((x.0)) = x , p ((O,0). 0. R (u) = u ,and also is the
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same as in Theorem 2 of [Mo].

2. Preliminary lemmas (I)

The proof of Theorem 1 can be carried out by the same idea as in Davis

[Da2J. He applied the LePage representation (the infinite series repre-

sentation) of stable random variables to prove the stable limit theorem for

dependent random variables. Here we shall use the infinite series repre-

sentation of infinitely divisible random variables recently developed by

Rosunski [R].

Let Mn and Wk be. respectively, the k-th largest and smallest among

{X X ), and denote Mk and Wk for the associated i.i.d. sequence ( }.ni TM n n nj

similarly. (Of course Nk= eand Wk =by the notation inn n.n-k+l n n.k

Introduction.)

Lemma 2.1. ([Lo]) Ulcer (1.2). as n- .

P(n x)-- e - v ( [ x ' w) ) ,  x > 0,

P{I  > x}- v ( ( - ' ' x ] )  x<O.

Lemma 2.2. Under (1.2), (D.1) and (D.2),

p(Ml x- e - V([x 'w)) ,  x > 0.
n

PW> > x} - e v ( (- 'x ) , x < O.

Proof. This is an analogue of Theorem 3.4.1 in [LLR] and it is enough to

modify its proof slightly to the case of triangular arrays by using Lemma 2.1,

Lemma 2.3. Under (1.2). (D.1) and (D.2), the joint limiting distribution of two

vectors
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(M,.. Mk ) and (W1 .. Wk)

is the same as that of

nk n) and (W.. jk)

for each positive integer k.

Proof. The case where v((-e,O)) > 0 and v((O,w)) > 0 is an analogue of Theorem

1 of Davis IDa2]. He proved the corresponding result in the case of single

sequences by using Lenma 2.2 together with Theorem 4.2 and Remarks . and 2 in

[Dal]. which remain valid in our case of triangular arrays. Details are

omitted.

The case where v((-aa,O)) = 0 or vetO~w)) = 0 is an analogue of Lemma 1 in

[DW2]. We only prove the case v((O.cs)) = 0. The case v((-o.O)) = 0 is similar.

It follows from (1.2) that when v((Ow)) = 0. for any a > 0.

n(l - Fn(a)) -+ 0. F(-a) -0 as n-.

Hence for I e K k and for any e > 0.

P{ IMl > ) P( N < _ +-e +P( Mln > e

k n
P{ U {X <-e }}+P{ U {XPf >e )>

J=l j=l

k Fn(-e) + n(l - Fn (a)) -+ 0

as n Thus, the vector (kn n) has a degenerate limit while (Wn,....

Wk) has the same limit as (P ..... in). This completes the proof. 0
n ~nn

We end this section with remarking the almost sure convergence of the

infinite series in (r)Z. Recently, Rosinski [R] studied the infinite series



7

representation of infinitely divisible random variables without Gaussian

components. Our L6vy measure v(-) satisfying assumption (A.2) is a special case

of those he treated in his paper. It follows from Corollary 4.8 of [R] that

n1 6 R(l') - (p-q) JP R(u) 1{R(u) l} du

J=l1

converges a.s. as n - to an infinitely divisible random variable whose

characteristic function is given by (1.1) with v(dx) = p 11x>O ) p(dx) + q l{x<O)

p(dx). On the other hand. it is easy to see that as n - .

n
J~oR(u) lIR~u1l du = I E[R(r ) 1 ) + 0(1).0 (R ~l ElR J=) (R(r i)W1

Hence

; {R(r6 ) - (p-q) E[R(r ) 1{R(r ) I1}
J=l

converges a.s.. and so does (r)z for any r 1.

3. Preliminary lemmas (II)

Let Hn (x) = P{IX nI > x }. x > 0. Then (1.4) implies

(3.1) n H (x) -i p((x.)), x > 0. as n .

Define Ynk and 6nk for the associated i.i.d. sequence {X nj as Ynk and 6nk for

{X n}. We see that

4nn rI  r
(3.2) (H ( ),H., Hn(Y d 1 " ),.. n~ = .. n+1

where = denotes the equality in distribution (see. e.g., Breiman [Br]. Section

13.6).

Let us define the following infinite-dimensional random vectors.
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= (Y 1.... Y. 0, 0 ....) EO.co)0.

Z - (n 1 .. Y . 0, 0 ....) [0.Go) .

Z = (R(rl). R(r2 ) ... ) € [0,o)

= nl ..... nn 1, 1...) C {-II}m,

S(ni 6 . 1nn . 1 .... C {-.}

and

6 = (6 1- 62 " .. }e (11

^nw
Lemma 3.1. Under (1.4). Z n  Z.

Proof. This is an analogue of Lemma 1 in [LWZ]. The same proof can be carried

out by using (3.2). n

Lemma 3.2. Under (1.4), (D.1) and (D.2), Zn w Z.

Proof. This is an analogue of Lemma 2 in (Dav2]. Under the assumptions for

IXn } . (IXnj 1} satisfies the same assumptions. Thus we can apply Lemma 2.3 for

p=l to (IX ni) to conclude that Zn and in have the same limiting distribution.

The statement thus follows from Lemma 3.1. a

Lemma 3.3. Under (1.4). n w 6. and ^5n is asymptotically independent of in.

Proof. This is an analogue of Lemma 2 in [LWZ] and the proof is quite similar,

so we omit it. 0

Lemma 3.4. Under (1.4). (D.1) and (D.2), 6 5. and 6n is asymptotically

independent of Zn.

Proof. This is an analogue of Lemma 3 in [Dav2] and the same proof is carried
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out after replacing Theorem 1 in (Dav2] and Lemma 2 in [LWZ] by our Lenms 2.3

and 3.3 above. 0

4. Proofs of the theorems.

Proof of Theorem 1. The argument of the proof is the same as those in [LWZ] and

[Dav2]. For notational convnience, let [x; A] = x 1A(x) for an interval A.

For 0 < e < X. let

(r)S= n
s (6,X] = 6 nj[ (E,X]]
n J=r+l

and

6r)s(X] = I [R( (e,X.

J=r+l

Then

(r)Sn- (r)c = (r)Sn(O0,] - E[(r)S (O, ] ] + (r)Sn(6 'W) - E[(r)S(,l]].

To prove the theorem, it is enough to show (cf. Theorem 4.2 in [Bi]) that

(4.1) lim limsup Var[(r)Sn(Oe]] = 0.

(4.2) (r)S (,w) (r) ) as n -n

(4.3) E[(r)Sn (a,l]] -oE[(r)S(..l]] as n

and

(4.4) (r)s(,) - E[(r)s(e,I]] ! (r)Z as a - 0.

To show (4.1), observe that

Var[(r)S n(O,'e]]

n 
]]2]

n E[16 [nj[ (O,e[Y - E[Fn][Yn ; (0i [Y"]l 2

J=r+l
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n n
+ I I Cov(6 n[Yn ; (0.6]]. 6nk[Ynk; (0.e))

J=r+l k=r+1
kuij

n IE[[jn[Ynj (0.E]) - E[8n [Yn; (0,eTJJI2J

n n

+ I 1 max{O. Cov(6n [Yn ; (O,e, ank[Ynk; (0.6)])}
J=1 k=l

k j

S( fIxl<. xdF (x) - (flxl<, xdFn(x)) 2 }

n
+ 2n I mx(O. Cov([Xnl; C-e.eJ). CXn; C-ee]])}.J=2

where we have used the stationarity of fXnl.... Ann)  We thus have (4.1) by

(1.3) and (D.3).

To show (4.2). define the subspace W of [o.w)W consisting of all w = (w1,

w2 .... ) for which wI  w2  ... 2 0. and a function Or on W x (-1,1}' by

r (w.d) = I [w (aw)]
J=r+l

for d = (d , . . ) C (-l. 1}' and w = (wl , w2 .... ) C W for which w 0 as

j -+ w and #r(wd) = 0 for other values of w. Then as shown in [LWZ], r is

continuous in the product topology of W x (-1,1} at a.e. (wd) with respect to

the distribution of Z and 6. and so by Lemmas 3.2 and 3.4,

(r)Sn(,)= # (Zn,.n) w *(Z,) = (r)S(,,.)

as n - for a > 0, concluding (4.2). Note that the above proof also assures

(O)SA(6so ] an(O)s( I].

Also as in [LWZ], S0n ( I]. n--1.2,... are uniformly integrable, because
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P(IXn1l > a) ~ n 1 v((a.-)), where Sn is defined for {X n} . Then we have

E[(O)Sn(a.1]] = E[(O)sn(&,I]] 4 E[(O)S(e.I]].

Therefore, to get (4.3) it suffices to show that

(4.5) E[6n [Ynj; (a.1]]] -* E[6E[R(F); (a,]]]

for 1 j r. However, we see from Lemma 3.4 that

6 n [Y ni: (E,11] ! 6 1[R(r i); (f-,1]]

and those random variables are bounded by 1. The bounded convergence theorem

concludes (4.5).

Finally, to show (4.4), note that

(r)Z - {(r)S(,,-) - E[(r)S(.l]]}

IT (6 [R(r-); (O.]] - E[6 [R(rj); (Oel}.
J=r+l

Noting IT=I E[R(F )2] < w, we have that the variance of the above random

rando

vaariable is at most

E[[R(IF); (0,]]2) mine , E[R(F J)
J=l j=l

which tends to zero as a -* 0. This completes the proof of Theorem 1 o

Remark 2. It may not be needed to assume (D.3), in particular, for the case

when JO (x A 1) p(dx) < -, but our proof requires it.

Proof of Theorem 2. Although the form of the characteristic function of (r)Z

can be given from Theorem 2 of [Mo]. we give below a simpler proof. Note that
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(r)Z = a {6R() - (p-q) E[R(r); (0,11)

J=r+l

J ( R(F r ) - (p-q) ECR(r + ); (0.11).

where {r1} is an independent copy of {1'r. It follows from Rosinski's result

explained at the end of Section 2 that for each u ) 0, the random variable

Z(u) := I R(u + r ) - (p-q) E[R(u + r) (0-.1)]

is infinitely divisible and has the characteristic function of the form (1.1)

with the L6vy measure v whose right continuous inverse is (R(u + -), namely,I v(dx). if u p((Oo)) and lxi R(u)

0, otherwise.

Thus we can write

E[eiOZ(u)] = exp( o<Ixl(u) h(C.x) v(dx) }.

if we interpret O<IxIR(u) to be zero when u > p((O,m)), equivalently,

R(u) = 0. Hence we conclude that (r)Z is a mixture of infinitely divisible

random variables and

E[eir)z = (r11)! ur- 1 e-u E[eiZ(u)]du,

implying (1.5). 0

5. Related results

The argument in this paper up to here can be applied to prove other

results related to extreme values. As an example, we show a result on natural
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trimming.

We have been assuming that the L6vy measure v has a special polar

decomposition (A.2). We do not need this restriction if we consider natural

trimming based on the order statistics of {Xn 1..... Xn}. Recall that e ...

X ,and set

n-s
Sn(r,s) = . XnJ=r+l nj

We rewrite (1.1) as

f(6) = exp( J' h(e,x) dM(x) + r'w+h(O.x) dN(x) }.

where N(x) = v((- w.x]), x < 0 and N(x) = -v((x.c)), x > 0. Let for u > 0.

Rl(u) = inf{ X < 0; M(x) > u }

and

R2(u) = inf{x > 0; -N(x) > u

Let {r 1()} and (r(2)} be two independent copies of (r We have the following.

Theorem 3. Assume (A.1), (D.1), (D.2) and (D.3). Then we have

n-s
S(r,s) - I E[[x j; [-1,1)]

j=r+l

w Z(rs) I {Rl(rl)) - E[[RI(rIl); [-. )]]}

j=r+l

+ I { R2(rj2)) - E[ [R2(r()); (0.1]]]).
J=s+l

The characteristic function of Z(rs) is given by

EeiOZ(r.s)] = 1 [ M(O- ) ur - exp{ -u + h(6,x) dM(x)}du{ (r-l) !) 2 0uh RIM d~) d
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+ N(O-) u r - 1 e - u du]

x E -o ( ° + ) Ur-l exp( -u + fR2u) h(O,x) dN(x) }du

+ f CO r- 1 e - u du].

Proof of Theorem 3. Some minor changes in the proof of Theorem 1 are enough to

prove the first pasrt of the theorem.

Instead of Zn. 5n, etc. in Section 3. we consider the following

infinite-dimensional random vectors.

e) : l '-o . [X n; (-.,O)]. 0.0 .... ) C (-o,0]

in EI* .. . (-W o)1 .o .... C . l
Z( ) = (R0I( )). RjI(.)) .... ) C (--.0]]

zn ... [

(2) =( ; (O,).... n. r+1; (0,W)). 0.0 .... ) C [0,) ,

Z( = [ (0.)]..... [X .r+l; (0.-)]. 0.0 .... ) € [0.0)0.

Z(2 ) = (R(r(2)). R(( 2 )) .... ) 0.0)0.

Lemma 5.1. ([J]) Under (A.1),

^n wZ n ^n
z(1) 1) z(2) z(2)"

By Lemmas 2.3 and 5.1. we get

Lemma 5.2. Under (A.1). (D.1) and (D.2).

zn w n

Z(1) - Z(1) and Z(2 ) (2)"

To prove Theorem 3, as in the proof of Theorem 1. we have
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n-s
S(rs)- I El[r [-1.1)))

n J=r+l n
n--j

Jr+n-s

J=r+l j

n-s
+ I ([ev(li-sup E[-

J=r+- nj r nj

and need to show that

(5.1) ii. limsup Var( 1 X;[eel 0.
e-10 n-w J=r+1 j

ri-s (k
(5.2) [X:j; Ak] = [Rk(rFk); Ak]. k=1,2,

J=r+l =ak l

where A1 =(-m, -). A2 = (a.co) and 61 = r, 62 = s.

n-s (k)
(5.3) 1 E[[Xj.; Bk]] - I I E[RkCF k)); Bk], k=1.2.

J=r+l J=6k+l

where B1 = [-1. -a), B2 = (a,1], and

(5.4) c {[Rk(r'k)); Ak] - E[[Rk(rk)); Bk]}J=6k+l 1

w (k

S {k(rk)) - E[k( )); [_1.0)],J=61j+1 kr

k=1,2, as a -0.

(5.1) can be shown as in (4.1). To show (5.2) for k=l, define the

subspace W of (--m.0] consisting of all w = (w,. w2 .... ) for which wI 9 w2 9

O. and a function #r on W by
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#r (w) = {-,.-)]
J=r+l

for w C W for which w 0 as J - and * (w) = 0 for other values of w. Then

it is shown that #r is continuous in W at a.e. w with respect to the distri-

bution of Z(1), and so by Lemma 5.2.

n-s
I- EXn; (--m. -a)] = 0(Z(1n

J=r+l nj r (1)

( rZ(1) I [R (r~l)) '  _,_)
r J=r+l [ j

as n -*0, for a > 0. A similar argument proves (5.2) for k = 2. As to (5.3). we

can show it by the same reasoning as in (4.3). Also, (5.4) is given by the same

way as in (4.4), if we note that for k=1.2,

a E[R((k)) [J 2 ~ ~ 2. [R(r(k))2]}.
J=l j=l

where I= E[Rk(r(k)) 2 ] < = because of the property of L6vy measures. This

completes the proof of the first part of Theorem 3.

The form of the characteristic function of Z(r,s) is given by Theorem 2.

if we regard Z(r.s) as a sum of two independent infinitely divisible random

variables, one of which is distributed as (r)Z with p=O and another is as {S)z

with p=l in Theorem 2. 0
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